Al-Ho-Ti (Aluminum-Holmium-Titanium)

V. Raghavan

Recently, [2000Hua] determined an isothermal section for this system at 500 °C.

Binary Systems

The Al-Ho phase diagram [1988Gsc] depicts five intermetallic compounds: $HoAl_3$ (rhombohedral), $HoAl_2$ (MgCu₂-type cubic), HoAl (ErAl-type orthorhombic), Ho_3Al_2 (Zr₃Al₂-type tetragonal), and Ho_2Al (Co₂Si-type orthorhombic). An additional phase Ho_2Al_{17} (Th₂Zn₁₇-type rhombohedral) was reported by [1993And] and confirmed by [2000Hua]. An updated version of the Al-Ti system appears in this issue. The Ho-Ti phase diagram is not known.

Ternary Compounds

Two Al-rich ternary compounds were reported in this system by [1995Nie1,2]. Ho₆Ti₄Al₄₃ (denoted τ_1 here) is Ho₆Mo₄Al₄₃-type hexagonal, space group P6₃/mcm, a =

1.1035 nm, and c = 1.7839 nm [1995Nie1]. The second compound HoTi₂Al₂₀ (τ_2) is CeCr₂Al₂₀-type cubic, space group *Fd3* or *Fd3m*, a = 1.4670 nm [1995Nie2].

Isothermal Section

With starting metals of 99.9% purity, [2000Hua] melted 124 alloy bottons in an arc furnace under Ar atm. The samples were given a final anneal at 500 °C for 4 days and quenched in ice-water mixture. The phase equilibria were studied mainly by x-ray powder diffraction, with supplementary data from differential thermal analysis and electron probe microanalysis. The isothermal section at 500 °C constructed by [2000Hua] is redrawn in Fig. 1 to agree with the accepted binary data. The two ternary compounds τ_1 and τ_2 are present at 500 °C. The maximum solubility of Ti in Ho₂Al, Ho₃Al₂ and HoAl₂ are 2, 3, and 15 at.%, respectively. The solubility of Ho in the Ti-Al phases is ≤ 0.6 at.%. [2000Hua] assumed that no intermediate phases exist in the Ho-Ti system.

Fig. 1 Al-Ho-Ti isothermal section at 500 °C [2000Hua]; narrow two-phase regions around tie-triangles are omitted.

References

- **1988Gsc:** K.A. Gschneidner, Jr. and F.W. Calderwood, The Al-Ho (Aluminum-Holmium) System, *Bull. Alloy Phase Diagrams*, Vol 9 (No. 6), 1988, p 684-686
- **1993And:** M. Andrecut, I. Pop, and I. Burda, Structural and Magnetic Characteristics of the Intermetallic Compounds Ho₂Al₁₇ and Er₂Al₁₇, *J. Phys. D: Appl. Phys.*, Vol 26, 1993, p 1810-1813
- **1995Niel:** S. Niemann and W. Jeitschko, Ternary Aluminides $A_6T_4Al_{43}$ (A = Y, Nd, Sm, Gd-Lu, and U; T = Ti, V, Nb, and

Ta) with $Ho_6Mo_4Al_{43}$ Type Structure, J. Solid State Chem., Vol 116, 1995, p 131-135

- **1995Nie2:** S. Niemann and W. Jeitschko, Ternary Aluminides AT_2Al_{20} (A = Rare-Earth Elements and Uranium; T = Ti, Nb, Ta, Mo and W) with $CeCr_2Al_{20}$ type Structure, *J. Solid State Chem.*, Vol 114, 1995, p 337-341
- **2000Hua:** J. Huang, J. Liang, H. Zhou, Y. Zhuang, and J. Yan, Phase Relationships in the Al-Ti-Ho System at 773 K, *J. Alloys Compd.*, Vol 307, 2000, p 199-201